LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034	
M.Sc., DEGREE EXAMINATION - MATHEMATICS	
SECOND SEMESTER – APRIL 2013	
MT 2810/MT 2804 – ALGEBRA	
Date: 26-04-2013 Dept. No. Max. : 100 Time: 9.00 - 12.00	Marks
Answer ALL the Questions:	
1. a) Define the Normalizer of $a \in G$ and prove that N(a) is a subgroup of G.	
(OR)	(5)
b) Prove that if $O(G) = p^n$ where p is a prime number then $Z \neq (e)$ or $O(Z) > 1$.	
c) If p is a prime number and p^{α} divides O(G) then prove that G has a subgroup of order p^{α} .	
(OR)	(15)
 d) Show that the number of p-sylow subgroups in a finite group G is 1 + kp where p is a prime number. Also prove that any group of order 72 cannot be simple. 	
2. a) Given two polynomials $f(x)$, $g(x) \neq 0$ in F[x] then prove that there exists two polynomials $t(x)$, $r(x)$ in F[x] such that $f(x) = t(x)g(x)+r(x)$ where $r(x)=0$ (or) deg $r(x) < \deg g(x)$.	
(OR)	(5)
b) If $f(x)$ and $g(x)$ are primitive polynomials then $f(x)g(x)$ is also a primitive polynomial	
c) Let R be an Euclidean Ring and M be the finitely generated R-module. Prove that M is the direct sum of a finite number of cyclic sub-modules.	
(OR)	(15)
d) State and Prove Eisenstein Criterion.	
e) State and prove Gauss Lemma.	(8+7)
3. a) If L is a finite extension of K and K is a finite extension of F then prove that L is a finite extension of F.	
(OR)	(5)
b) If R is a Unique Factorization Domain then prove that R[x] is a UFD.	
c) Prove that the element $a \in K$ is algebraic over F iff F(a) is a finite extension of F.	
(OR)	(15)
d) If F is of characteristic zero and a, b are algebraic over F then prove that there exists an element $c \in F(a, b)$ such that $F(c) = F(a, b)$.	

4. a) Prove that $\sqrt{3}$ and $\sqrt{5}$ are algebraic over Q. Find the degree of $\sqrt{3} + \sqrt{5}$ over Q and the basis of $Q(\sqrt{3}, \sqrt{5})$ over Q.

(OR)

b) Prove that K is a normal extension of F iff K is the splitting field of some polynomial over F.

c) State and prove the fundamental theorem of Galois Theory.

d) Prove that S_n is not solvable for $n \ge 5$.

e) Verify S₃ is solvable.

5. a) For every prime number p and for every positive integer m, prove that there is a unique field having p^m elements.

- b) If F is a field, and α , $\beta \neq 0$ are two elements of R then prove that we can find elements a, b in F such that $1 + \alpha a^2 + \beta b^2 = 0$.
- c) State and prove Wedderburn's theorem on finite division rings.

(OR)

(15)

(5)

(8+7)

d) If p(x) is a polynomial in F[x] of degree $n \ge 1$ and it is irreducible over F then there is an extension E of F such that [E:F]=n in which p(x) has a root.
