LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600034
M.Sc., DEGREE EXAMINATION - MATHEMATICS

SECOND SEMESTER - APRIL 2013
MT 2810/MT 2804 - ALGEBRA

Date: 26-04-2013
Dept. No.

Max. : 100 Marks
Time: 9.00-12.00

Answer ALL the Questions:

1. a) Define the Normalizer of $a \in G$ and prove that $N(a)$ is a subgroup of G.
(OR)
b) Prove that if $\mathrm{O}(\mathrm{G})=\mathrm{p}^{\mathrm{n}}$ where p is a prime number then $\mathrm{Z} \neq(\mathrm{e})$ or $\mathrm{O}(\mathrm{Z})>1$.
c) If p is a prime number and p^{α} divides $\mathrm{O}(\mathrm{G})$ then prove that G has a subgroup of order p^{α}.
(OR)
d) Show that the number of p -sylow subgroups in a finite group G is $1+\mathrm{kp}$ where p is a prime number. Also prove that any group of order 72 cannot be simple.
2. a) Given two polynomials $f(x), g(x) \neq 0$ in $\mathrm{F}[\mathrm{x}]$ then prove that there exists two polynomials $\mathrm{t}(\mathrm{x}), \mathrm{r}(\mathrm{x})$ in $\mathrm{F}[\mathrm{x}]$ such that $f(x)=t(x) g(x)+r(x)$ where $r(x)=0$ (or) $\operatorname{deg} r(x)<\operatorname{deg} g(x)$.
(OR)
b) If $f(x)$ and $g(x)$ are primitive polynomials then $f(x) g(x)$ is also a primitive polynomial.
c) Let R be an Euclidean Ring and M be the finitely generated R -module. Prove that M is the direct sum of a finite number of cyclic sub-modules.
(OR)
d) State and Prove Eisenstein Criterion.
e) State and prove Gauss Lemma.
3. a) If L is a finite extension of K and K is a finite extension of F then prove that L is a finite extension of F.
(OR)
b) If R is a Unique Factorization Domain then prove that $\mathrm{R}[\mathrm{x}]$ is a UFD.
c) Prove that the element $a \in K$ is algebraic over F iff $F(a)$ is a finite extension of F.
(OR)
d) If F is of characteristic zero and a, b are algebraic over F then prove that there exists an element $\mathrm{c} \in \mathrm{F}(\mathrm{a}, \mathrm{b})$ such that $\mathrm{F}(\mathrm{c})=\mathrm{F}(\mathrm{a}, \mathrm{b})$.
4. a) Prove that $\sqrt{3}$ and $\sqrt{5}$ are algebraic over Q . Find the degree of $\sqrt{3}+\sqrt{5}$ over Q and the basis of $Q(\sqrt{3}, \sqrt{5})$ over Q .
(OR)
b) Prove that K is a normal extension of F iff K is the splitting field of some polynomial over F .
c) State and prove the fundamental theorem of Galois Theory.
(OR)
d) Prove that S_{n} is not solvable for $n \geq 5$.
e) Verify S_{3} is solvable.
5. a) For every prime number p and for every positive integer m, prove that there is a unique field having p^{m} elements.
(OR)
b) If F is a field, and $\alpha, \beta \neq 0$ are two elements of R then prove that we can find elements a, b in F such that $1+\alpha a^{2}+\beta b^{2}=0$.
c) State and prove Wedderburn's theorem on finite division rings.
(OR)
d) If $\mathrm{p}(\mathrm{x})$ is a polynomial in $\mathrm{F}[\mathrm{x}]$ of degree $n \geq 1$ and it is irreducible over F then there is an extension E of F such that $[E: F]=n$ in which $\mathrm{p}(\mathrm{x})$ has a root.
